Reduced-basis output bound methods for parabolic problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced-basis output bound methods for parabolic problems

In this paper, we extend reduced-basis output bound methods developed earlier for elliptic problems, to problems described by parametrized parabolic partial differential equations. The essential new ingredient and the novelty of this paper consist in the presence of time in the formulation and solution of the problem. First, without assuming a time discretization, a reduced-basis procedure is p...

متن کامل

An improved error bound for reduced basis approximation of linear parabolic problems

We consider a space-time variational formulation for linear parabolic partial differential equations. We introduce an associated Petrov-Galerkin truth finite element discretization with favorable discrete inf-sup constant βδ, the inverse of which enters into error estimates: βδ is unity for the heat equation; βδ decreases only linearly in time for non-coercive (but asymptotically stable) convec...

متن کامل

The Static Condensation Reduced Basis Element Method for Parabolic Problems

We present a new approach for fast, flexible and reliable simulations of parameterdependent parabolic problems with a component-based geometry. The static condensation reduced basis element (SCRBE) is a domain decomposition method with reduced basis (RB) approximation at the intradomain level to populate a Schur complement at the interdomain level. In the Offline stage, for a library of archety...

متن کامل

Certified Reduced Basis Methods for Parametrized Distributed Optimal Control Problems∗

In this paper, we consider the efficient and reliable solution of distributed optimal control problems governed by parametrized elliptic partial differential equations. The reduced basis method is used as a low-dimensional surrogate model to solve the optimal control problem. To this end, we introduce reduced basis spaces not only for the state and adjoint variable but also for the distributed ...

متن کامل

Reduced Basis Multiscale Finite Element Methods for Elliptic Problems

JAN S. HESTHAVEN ∗, SHUN ZHANG † , AND XUEYU ZHU ‡ Abstract. In this paper, we propose reduced basis multiscale finite element methods (RB-MsFEM) for elliptic problems with highly oscillating coefficients. The method is based on multiscale finite element methods with local test functions that encode the oscillatory behavior ([4, 14]). For uniform rectangular meshes, the local oscillating test f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2006

ISSN: 1464-3642,0272-4979

DOI: 10.1093/imanum/dri044